RECEIVED MAY 19, 1949

A. H. ¢ value

the pyrolysis of 2-(2-chloroethoxy)-ethyl acetate. Since the latter is a new compound, its preparation and pyrolysis are described. Diglycol chlorohydrin was acetylated with acetic anhydride, and the product (94% yield) was purified by distillation: b. p. 80° (1 mm.); d^{20}_4 1.1546; n^{20} D 1.4398. Found: M^{20} D 38.02; C, 43.3; H, 6.8. Calcd.: M²⁰D 38.07; C, 43.3; H, 6.7. Pyrolysis over Pyrex glass at 500 and 550° (contact time, 8 sec.) decomposed 32 and 83%, respectively, of the ester but produced little if any chloroethyl vinyl ether. Most of the products were gases.

PHILADELPHIA 18, PA. **RECEIVED MARCH 11, 1949**

Alkoxy-s-triazines. III

By William M. Pearlman, Jacqueline Downs Mitul-ski and C. K. Banks

In the search for antihistaminic compounds of the triazinyl ether type the alkyl 2,4-diamino-6-sThe ethers were prepared by previously described methods^{1,2} from 2-chlorotriazines already described.8

The compounds were tested by Dr. Graham Chen and Mr. Charles Ensor of our laboratories by the histamine-aerosol technique of Dr. E. R. Loew.² The physical properties and effective antihistaminic values are recorded in the accompanying table.

(3) Pearlman and Banks, ibid., 70, 3726 (1948).

 $-N(R_3)(R_4)$

RESEARCH LABORATORIES

PARKE, DAVIS AND CO. DETROIT 32, MICH.

 $\|$ N

0--R.

Synthesis of 3-Carbomethoxy-3-methylcyclopentanone

BY JOHN D. ROBERTS, A. K. JEYDEL AND ROSE ARMSTRONG

Ruzicka¹ has reported the preparation of 3-carbethoxy-3-methylcyclopentanone (I) through sev-

	$(R_1)(R_2)N-0$	≥=N—	
ALKOXY-S-TRIAZINES		N=C-	

TABLE I

R.	Rs	M. p., °C.	Yield, %	Recrystalliza- tion solvent ^a	Car Caled.
	$C_5H_{11}^d$	181-183	30	Ch	48.7
	C₅H11 ^e	170 - 172	30	В	48.7
	C_2H_5	170-171	79	H_2O-E	42.6
	$n-C_{3}H_{7}$	175 - 177	68	H ₂ O-P	45.9

					Recrystalliza-	Carbon Hydrogen			(effective	
R1, R2	R3, R4	R	М. р., °С.	Yield, $\%$	solvent ^a	Caled.	Found	Caled.	Found	mg./kg.)
H_2	H_2	$C_5H_{11}^d$	181-183	30	Ch	48.7	48.7	7.7	7.4	25
H_2	H_2	C ₅ H ₁₁ ^e	170 - 172	30	В	48.7	48.7	7.7	7.3	50
H_2	H, CH3	C_2H_5	170-171	79	H_2O-E	42.6	42.8	6.6	6.7	12.5
H_2	H, CH3	$n-C_{8}H_{7}$	175 - 177	68	H_2O-P	45.9	46.1	7.2	7.2	12.5
H_2	Н, СН 3	$n - C_6 H_{13}$	166 - 168	75	H₂O-E	53.3	53.7	8.5	8.5	>50
H_2	н, CH3	<i>c</i> -C ₆ H ₁₁	232 - 234	64	H ₂ O-MC	54.0	54.2	7.7	7.5	12.5
H_2	Н, CH3	Phenyl	211 - 213	64	H_2O-D	55.3	55.5	5.1	4.9	>25
H, CH ₃	н, Сн 	C_2H_5	171-173	61	H₂O-E	45.9	46.1	7.2	7.3	12.5
H ₂	$(CH_{3})_{2}$	C_2H_5	156 - 158	88	В	45.9	46.2	7.2	7.2	25
H, CH3	$(CH_3)_2$	C_2H_5	173-175	80 ¹	В	48.7	48.6	7.7	7.6	25
н, Сн 	$(CH_3)_2$	$c - C_6 H_{11}$	154	75'	м	57.3	57.6	8.4	8.4	$>\!25$
H_2	H, C₅H11	C₂H₅	103 - 105	55	H₂O-E	53.3	53.4	8.5	8.2	$>\!25$
H_2	H, C₅H11	$n-C_3H_7$	92 - 95	46	H_2O-E	55.2	54.8	8.9	8.7	••
H, C₂H₅	H, C₂H₅	C_2H_5	116-118	44	H_2O-E	51.2	51.2	8.1	8.2	>25
H, C₂H₅	H, C₂H₅	$n-C_3H_7$	82-84	88	H₂O-E	53.3	53.5	8.5	8.4	••
H_2	C_2H_5O , C_6H_5	C_2H_5	194–196 d.	83	H ₂ O-EC	56.7	56.7	6.2	6.1	50

^a All compounds were colorless: B = benzene, Ch = chloroform, D = dioxane, E = ethanol, EC = Ethyl Cellosolve, M = methanol, MC = Methyl Cellosolve, P = propanol. ^b Analyses by our Microanalytical Department under the direction of Messrs. A. W. Spang and C. E. Childs. ^c See ref. 2. ^d 3-Methylbutyl. ^e 2-Methylbutyl. ^f Prepared by Mr. John Controulis. ^e Hydroxyethyl.

triazinyl ethers were found to have a peak of activity at the *n*-propyl compound.¹ A subsequent investigation of the methyl and butyl ethers of thirty substituted-aminotriazines disclosed no regular progression of activity as was noted in the first series.² Subsequently, an examination of the previously determined antihistaminic activities indicated that certain miscellaneous alkyl ethers should be prepared to determine if any products of appreciable activity had been overlooked.

(1) Controulis and Banks, THIS JOURNAL, 67, 1946 (1945).

(2) Pearlman and Banks, ibid., 71, 1128 (1949).

eral steps from ethyl levulinate. In the present investigation, a shorter synthesis of the corresponding methyl ester (II) was achieved from the adduct of butadiene with methyl methacrylate by the following route.

$$\begin{array}{c} CH_2 \\ CH \\ CH \\ CH \\ CH \\ CH_2 \end{array} + \begin{array}{c} CH_3 \\ C-CO_2CH_3 \\ H_2 \end{array} \begin{array}{c} 180^{\circ} \\ 84\% \end{array}$$

(1) Ruzicka, Ber., 50, 1362 (1917).